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Cell and gene-based therapies represent a novel therapeutic modality 
that has the potential to provide a treatment option for a range of medical 
conditions. There are, however, numerous processing and manufacturing 
challenges that must be addressed before such therapies are considered 
commercially and clinically viable. A significant challenge associated with 
the manufacture of such therapies is ensuring cell quality and the prod-
uct’s critical quality attributes are retained throughout the entire bio-
process. Biopreservation is an important aspect of cell and gene-based 
therapy bioprocessing, which enables the development of cell banks. It 
increases process flexibility by providing a shelf-life to the product, en-
ables the storage of intermediates and provides breakpoints within the 
process. In this article, we summarize the advances and challenges asso-
ciated with biopreservation of cell and gene therapies.
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Cell and gene-based therapies 
(CGTs) represent a novel thera-
peutic modality that have the po-
tential to address the significant 
medical challenges associated with 
chronic, age-related clinical indica-
tions and provide a treatment op-
tion for a range of unmet medical 
needs. There are, however, numer-
ous processing and manufacturing 
challenges that must be addressed 

before such therapies are consid-
ered commercially and clinically 
viable. A significant challenge as-
sociated with the manufacture of 
such therapies is ensuring cell qual-
ity and that the  product’s critical 
quality attributes (CQAs) [1] are 
retained throughout the entire bi-
oprocess, from initial cell isolation 
through to delivery and administra-
tion to a patient. Unlike traditional 

biopharmaceutical manufacture, 
manufacturing paradigms for CGTs 
may involve an autologous (pa-
tient-specific), allogeneic (universal 
donor) or haplobank approach. 

An important aspect of all CGT 
bioprocessing is biopreservation. This 
enables the creation of cell banks 
(master and working cell banks for al-
logeneic product manufacture or stor-
age banks for patient specific material 
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such as cord blood). This can uncou-
ple the expansion and/or manipula-
tion of cells from the clinic, creating 
product shelf-life and also facilitates 
the transport/storage of any product 
intermediates (e.g., newly isolated 
cells or even  viral vectors) (Figure 1) 
[2]. Indeed, where the process ne-
cessitates transfer of cellular material 
from the clinic to an off-site facility 
for processing and/or expansion, bio-
preservation measures will be critical 
to product quality and success. This 

places particular emphasis on the ap-
propriate selection of biopreservation 
methods, with a need to demonstrate 
that they do not adversely impact 
the product’s CQAs. Moreover, the 
biopreservation methodology needs 
to align with the business and dis-
tribution model to ensure commer-
cial success and should occur during 
early stages of development given the 
integral role biopreservation plays 
in the logistical and manufacturing 
bioprocessing considerations [3]. 

ff FIGURE 1
Simplified overview of a cell therapy manufacturing process showing when biopreservation (shown by 
vials) may be applied. 
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The manipulation indicated would vary from therapy to therapy or may not be needed but could for example include differentiation of 
iPSC cells to cells of therapeutic interest, genetic engineering of T-cells for CAR T cells production.  For the creation of cell banks, be it 
master cell banks for allogeneic products or single vials of patient specific material stored for later use, cryopreservation is the most 
commonly used option. However, hypothermic storage at ambient or refrigerated temperatures may enable short shelf lives of some 
‘fresh’ products to be achieved.
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Biopreservation also determines the 
level of at-clinic processing, that is, 
will the cells need to be thawed pri-
or to administration or are they pre-
served and subsequently delivered at 
ambient temperature. Thus, in many 
CGT processes, it is likely that bio-
logical material will require at least 
one biopreservation step, if not more 
(Figure  1).  This will be exacerbat-
ed for gene therapy products where 
other biological material (such as vi-
ral vectors) are also likely to undergo 
an independent preservation process 
prior to their addition to the cellular 
material.

TYPES OF 
BIOPRESERVATION
Biopreservation is often used syn-
onymously with cryopreservation. 
However, whilst a review of the reg-
ulatory submissions for mesenchy-
mal stem cell therapies to the FDA 
in 2012 reveals that freezing is cer-
tainly a key biopreservation meth-
od, with more than 80% of submis-
sions involving a frozen product [4], 
it is not the only biopreservation 
method that is being considered for 
commercial and clinical use. Indeed, 
given the need to retain the product 
CQAs and that multiple different 
manufacturing/distribution mod-
els are likely to be employed for 
CGTs (e.g., autologous, allogeneic 
and haplobank), it has become in-
creasingly important to consider 
other types of biopreservation for 
the storage and transportation of 
biological material. This includes 
hypothermic preservation (i.e., ‘cell 
pausing’) at either ambient [5–7] or 
refrigerated chilled temperatures 
[8,9]. Ultimately, the decision as to 
which biopreservation method is 
most appropriate will need to take 

into account which method has the 
least effect on the product’s CQAs 
whilst remaining both commercial-
ly, clinically and logistically viable. 

Cryopreservation

Freezing is the most common bio-
preservation method employed in 
CGT processes [2], with the first 
successful cryopreservation taking 
place in 1949 with spermatozoa in 
glycerol [10]. Standard cryopreser-
vation practise of cellular material 
usually involves a two-step con-
trolled rate freezing (CRF) process: 
(1) the controlled reduction of the 
temperature of the cellular materi-
al to -80˚C at a rate of 1 ˚C /min, 
followed by, (2) reducing the tem-
perature even further to less than 
-150˚C, usually by placing into 
liquid nitrogen, its vapour phase 
for long-term storage. This meth-
od of CRF has been demonstrated 
for both millilitre cryovials and in 
bags of large volumes (>100 mL) for 
both adult stem cells [11] and other 
mammalian cells [12,13]. It has also 
been successfully employed for the 
human fibroblast-derived dermal 
substitute Dermagraft (Advanced 
Biohealing, USA) [14] in addition 
to the human mesenchymal stem 
cell (hMSC) product, Prochymal, 
which has received conditional ap-
proval in New Zealand and Can-
ada, and is available in the United 
States under an Expanded Access 
Programme for treatment of acute 
graft versus host disease in children 
[15, 16]. In the Health Canada sum-
mary basis of decision, Prochymal’s 
shelf-life is identified as 2 years at 
less than or equal to -135˚C [16]. 

Cryopreservation usually enables 
high cell recovery, with more than 
90% cell viability immediately post-
thaw. However, this is cell and pro-
cess-dependent and delayed onset 
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apoptosis can be caused [17], which is 
not detected immediately post-thaw 
by assays such as trypan blue exclu-
sion. Indeed, there have been studies 
which, for example, have demon-
strated that human embryonic stem 
cells are sensitive to cryopreservation 
with a relatively low recovery post-
thaw, in addition to changes in cell 
phenotype, resulting in poor out-
comes for cell functionality [18,19]. 
Moreover, whilst some studies have 
demonstrated an adverse effect on 
hMSC functionality with respect 
to T-cell suppression, response to 
IFN-γ, lower production of an-
ti-inflammatory mediators and im-
paired blood regulatory properties 
immediately post-thaw for hMSCs 
compared with actively proliferat-
ing hMSCs [20,21], yet others have 
demonstrated that cryopreservation 
does not adversely affect the viabil-
ity, immunomodulatory properties 
or differentiation capacity [22]. For 
example, Cruz et al. reported equiv-
alency between cryopreserved and 
non-cryopreserved hMSCs [23]. 
François et al. one of the groups 
who reported that hMSCs were ad-
versely impacted by cryopreserva-
tion did note that thawed hMSCs 
recovered their immunomodulatory 
functionality 24 hours post-culture 
[20] suggesting that a cell-recovery 
process may need to be incorpo-
rated post-thaw to retain viability 
and, more importantly, ensure func-
tionality of the cryopreserved cells. 
If indeed this is necessary for the 
product to retain its CQAs, this in-
creases process complexity and costs, 
with a particular consideration as to 
where the cell-recovery process step 
is conducted. Moreover, the differ-
ences between the aforementioned 
studies could also potentially be 
explained by differences in the cell 
handling, cryopreservation medium 

formulations, freezing protocols 
and thawing procedures. That the 
thawing process is often badly, if at 
all, controlled and that this may be 
responsible for some of the dam-
age perceived to be caused by cryo-
preservation is now starting to be 
recognised by the community. For 
example, at ISCT 2017, one report 
highlighted the interplay between 
cooling rate and thawing rate for 
T cell recovery post-thaw [24]. To 
address this, rapid and specialised 
thawing devices are being developed 
such as the ThawSTAR® from Med-
cision and VIA Thaw by Asymptote.  

As well as CRF, vitrification can 
also be used to cryopreserve cells. 
This involves the rapid cooling of 
the cellular material, thereby avoid-
ing formation of both extra- and in-
tra-cellular ice crystals [25] and gen-
erating amorphous ice. Although 
vitrification has been employed 
successfully for multiple cell types, 
in particular, colonies of human 
embryonic stem cells, where vitri-
fication has resulted in high levels 
of viability and retention of func-
tionality post-thaw [26–28].  How-
ever, this method uses significantly 
higher levels of cryoprotective agent 
(CPA) than in CRF to prevent ice 
crystallisation, and enable vitrifica-
tion at a higher glass transition tem-
perature and an achievable cooling 
rate. Also, although efforts are on-
going to generate larger scale vitri-
fication methods, the high cooling 
rates needed mean that only small 
volumes (typically 1-20 µl) may be 
vitrified at once [3], making this a 
poor option for the freezing of cell 
therapies currently. 

Cryopreservation challenges

Although cryopreservation is cur-
rently considered to be the industry 
standard for CGT biopreservation, 
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there are numerous challenges and 
considerations. Primarily, it is crit-
ical to understand the implications 
of cryopreservation on the prod-
uct’s CQAs. This requires in-depth 
understanding about the product’s 
biological attributes, mechanism 
of action and safety profile. There 
are also concerns with the use of 
liquid nitrogen in a GMP environ-
ment, where it may compromise 
clean room air quality given the 
potential for contamination with 
microorganisms, particulates and 
debris during transport and storage 
[29–31]. To use liquid nitrogen in a 
clean GMP facility would require 
the use of validated sterilisation 
and/or filtration methods [31,32]. 
This can, however, be overcome by 
omitting the use of liquid nitrogen 
and using an electrically-powered 
Stirling cryocooler, which has been 
used for multiple human cell types, 
including human embryonic stem 
cells and alginate-encapsulated liver 
cells [31].

The most significant concern with 
cryopreservation is the use of CPAs, 
in particular the intracellular CPA, 
dimethyl sulphoxide (DMSO). 
DMSO, the most commonly used 
CPA, is classified by the FDA as a 
class 3 solvent [33] and is considered 
to be toxic to both cells and patients 
at room temperature . It is recom-
mended that patients do not receive 
more than 1 g/kg body weight/day 
of DMSO, with a maximum per-
missible limit of 50 mg/day [34,35]. 
Such concerns and restrictions have 
been put in place due to the toxicol-
ogy issues associated with DMSO 
[36]. This concern is exacerbated 
with vitrification, given the need 
to significantly increase the CPA 
concentrations to avoid ice crys-
tal formation. Although DMSO is 
still the most commonly used CPA, 

alternatives are being considered for 
the cryopreservation of mamma-
lian cells that pose a lower toxicity 
risk including trehalose [37] and 
sucrose [38]. These CPAs provide a 
similar level of protection to cellu-
lar material during freezing but  the 
challenge with these CPAs is their 
inability to penetrate the cell. The 
delivery of these CPAs into mam-
malian cells requires an additional 
process step, such as electroporation 
or permeabilization [37,39,40]. Such 
procedures alone can lead to cell 
death and destruction.

Hypothermic storage

Whilst it is generally recognised 
and accepted that for long-term 
storage (months/years), cryopres-
ervation remains the most cost-ef-
fective and scientifically robust 
method, there are genuine con-
cerns about the use of cryopreser-
vation for short-term storage and 
transport due to the potential for 
ice crystal formation and potential-
ly toxic CPA concentrations. A po-
tential alternative biopreservation 
method that is amenable for short-
term requirements (e.g., days) is 
hypothermic storage. This includes 
chilled preservation, a process 
where the temperature is reduced 
to 2–8˚C and ambient preserva-
tion (room temperature). Refriger-
ated preservation is currently used 
for the transfusion of red blood 
cells for the treatment of severe 
anaemia. Red blood cells can be 
stored at refrigeration temperature 
for up to 42 days within an addi-
tive solution, where they can then 
be transported to the site of admin-
istration upon request [41]. More-
over, refrigeration temperatures 
have also been used for the storage 
and transportation or whole organs 
prior to transplantation [42,43]. 
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Much of the research and devel-
opment activity for chilled preser-
vation relates to storage and trans-
portation of whole organs and red 
blood cells. However, with the in-
creasing promise of CGTs, there 
has been renewed interest in short-
term chilled preservation for CGT 
cell candidates, in particular, stem 
cells. The commercial hypothermic 
preservation medium solution Hy-
poThermosol® Free Radical Solu-
tion (HTS-FRS) (BioLife Solu-
tions, USA) has been used for the 
successful storage and preservation 
of a range of cell types including 
hMSCs [44] and differentiated hu-
man neural stem cells [45]. In the 
case of hMSCs, the cells retained 
greater than 85% viability after 96 
hours when stored at 4˚C [44], and 
for the differentiated human neu-
ral stem cells, the cells were seeded 
onto cellular collagen constructs 
and placed into a range of different 
medium compositions for storage at 
4˚C for 48 h. The cells which were 
preserved in the HTS-FRS medium 
composition demonstrated the least 
cell death (<10%), even lower than 
cells which were preserved using 
DMSO under cryogenic conditions 
[45]. Indeed, recently, HTS-FRS 
was used for TiGenix’s Phase 1 clin-
ical trial where expanded allogeneic 
adipose-derived stem cells stored in 
HTS-FRS were administered to pa-
tients [46].

Although chilled preservation 
will not be used as a long-term bio-
preservation method, it has demon-
strated significant potential for its 
ability to suitably preserve cells at 
refrigerated temperatures for time 
periods accounting for transporta-
tion across countries. Transporting 
a CGT product between countries 
a significant distance apart can take 
up to 24 h, however this does not 

take into account transportation 
delays, customs checks and poten-
tial clinical complications. As such, 
the longer the cells can be shown to 
demonstrate the retention of their 
CQAs in the biopreservation for-
mulation, the more flexibility this 
provides to the overall process [3]. 
The additional advantage of this 
type of preservation in comparison 
to cryopreservation is that much of 
the clinical infrastructure, logistics 
and supply chain aspects to enable 
chilled storage and transportation is 
already in place. As such, significant 
changes to current practice and fa-
cilities will unlikely be required.

Ambient temperature preser-
vation simplifies the process even 
further compared to chilled pres-
ervation and does not require any 
additional infrastructure to main-
tain refrigerated or cryogenic tem-
peratures, thereby reducing cost and 
process complexity. Unlike cryo-
preservation and, to a lesser extent, 
chilled preservation, the research 
with ambient temperature preserva-
tion is not as extensive and has only 
become an area of interest in light 
of the potential advantages this 
preservation method confers over 
the aforementioned techniques. 
The potential of this technique is 
demonstrated by Chen et al. (2013) 
who demonstrated that they were 
able to store hMSCs and mouse 
embryonic stem cells inside alginate 
hydrogels for 5 days in ambient 
conditions in an air-tight environ-
ment. Cell viability post-preserva-
tion was found to be 80% and 74% 
for the hMSCs and mouse embry-
onic stem cells, respectively [47]. 
Similarly, Swioklo et al., showed 
human adipose-derived stem cells 
could be encapsulated and stored 
at a range of temperatures, from 
4–23°C, although 15°C was found 
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to be the optimum [48]. The disad-
vantage to this method, however, 
is the need for a cell retrieval step 
which increases process complexity 
and will likely need to be under-
taken at or near clinic. Ambient 
temperature cell preservation has 
also been reported for hair follicles 
which demonstrated adequate graft 
recovery post-preservation [49]. Ad-
ditionally, Hunt et al., have report-
ed the successful preservation of 
other mammalian cell types (CHO 
and HEK293 cells) at temperatures 
ranging between 6–24˚C for more 
than 3 days [6]. 

As with chilled preservation, am-
bient temperature preservation is a 
potential technique that can be used 
for pooling of cells during the pro-
cess (for example post-harvest from 
culture devices awaiting down-
stream processing), or indeed, used 
for storage and transportation to site 
of clinical administration. However, 
it is critical that the acceptable tem-
perature ranges and timeframes are 
identified and validated, with the 
validated conditions making allow-
ances for potential processing and/
or transport delays. There should 
also be consideration of effect of 
multiple preservation steps (if em-
ployed) during a process and the 
cumulative effect of ambient tem-
perature preservation throughout 
the process. Greater product and 
process understanding will facilitate 
the consideration of multiple pro-
cessing options and increase overall 
process flexibility.

Hypothermic preservation 
challenges

There are two key challenges for 
chilled preservation. The first has 
been alluded to previously and re-
lates to the maximum time-peri-
od it can be effectively used, and 

importantly, validated, as a biopres-
ervation method. Although there 
has been promising research data 
that suggest chilled preservation in 
conjunction with specifically de-
signed hypothermic medium pres-
ervation solutions can retain cell 
viability and functionality across 
multiple days, there is a greater 
burden of evidence required for 
validation. 

The other key challenge with 
chilled preservation, and exacerbat-
ed for ambient preservation (dis-
cussed later), is the fact that chilled 
preservation only slows and does 
not arrest cellular functions, activ-
ity and metabolism. This results in 
the potential build-up of deleterious 
metabolites and, perhaps more criti-
cally, the depletion of important sub-
strates required for cell maintenance 
[50,51]. It should also be noted that 
although chilled preservation does 
not result in cellular damage arising 
from ice crystal formation or suffer 
from CPA toxicity issues experi-
enced with cryopreservation, there 
are concerns about chilled preserva-
tion resulting in cold-induced cell 
damage [52]. This risk of cell damage 
is intrinsically linked to the preserva-
tion time, with a greater risk of cell 
damage and decreased viability with 
longer preservation times [3]. There 
are also concerns with chilled pres-
ervation that once rewarmed to the 
appropriate administration tempera-
ture, the increased production of free 
radicals and other deleterious metab-
olites may result in delayed-onset cell 
death, which may not be noticeable 
immediately but take hours or days 
to become apparent [53].

A key challenge with ambient 
temperature preservation is demon-
strating the utility and efficacy of 
such a preservation at industrial 
scales and practical terms. Given 
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the relative infancy of this area of 
research, it is expected that further 
studies will be conducted outlining 
the promise and potential of this 
technique. However, at present, 
there is little that has been con-
ducted with relevant cell types with 
a focus on CGT manufacture and 
bioprocessing to be able to make a 
strong scientific case for ambient 
temperature preservation. However, 
should it be scientifically feasible, 
the advantages of ambient tempera-
ture preservation are substantial and 
would significantly reduce process, 
storage and transportation costs. 

TRANSLATIONAL INSIGHT
Biopreservation of biological ma-
terial for CGTs is often considered 
too late in process development or 
not given due attention because of 
what is often perceived as other, 
‘more important’ development ac-
tivities. However, for effective CGT 
process development, given its piv-
otal role in process development, 
storage, transportation and overall 
business model, it is critical to iden-
tify early in process development 
which biopreservation technique(s) 
(cryo-, chilled, or ambient preserva-
tion) is the most appropriate for the 
CGT. Cryopreservation will remain 
the only feasible biopreservation 

technique for long-term storage 
(months/years); however, both 
chilled and ambient preservation 
methods provide additional process 
flexibility, particularly with respect 
to interprocess pooling/storage and 
transportation across manufactur-
ing and clinical facilities. As with 
any CGT process, it is unlikely 
that a universal biopreservation 
approach will be appropriate for 
all cases and ultimately the process 
needs to be determined after thor-
ough development activity to iden-
tify effects of biopreservation on the 
product’s CQAs and the implica-
tions of the technique on the distri-
bution and commercial models.    
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