Bringing you the latest cutting-edge research and commentary in bioscience.

Cell & Gene Therapy Insights

Cell & Gene Therapy Insights

Issue Vol 4 Issue 1

Commercial Insights

Clinical Trial Insights
Interview

Advances in Media Formulations for Clinical-Scale Expansion of Cells

Spotlight Article

Interview

Thierry Burnouf

Separation & Expansion Technologies

Prof Thierry Burnouf, PhD, is the Vice-Dean of the College of Biomedical Engineering, Director of the Graduate Institute of Biomedical Materials and Tissue Engineering, Director of the International PhD Program in Biomedical Engineering, and Professor in the International PhD Program for Cell Therapy and Regeneration medicine at Taipei Medical University, Taiwan. He has over 30 years of experience in translational research and development and industrial manufacture of human therapeutic plasma proteins (coagulation factors, immunoglobulins, alpha 1-antitrypsin, etc.) and cellular products, with a special interest in protein isolation procedures and virus inactivation and removal technologies. He has been closely involved into the drafting of WHO Guidelines on virus inactivation and removal procedures applied to human blood plasma products, production of animal-derived antivenoms immunoglobulin, and production, quality control and regulation of plasma for fractionation. He is a member of the working parties on Cellular Therapies and Global Blood Safety of the International Society of Blood Transfusion.

Read full article »

Advances in Expansion Technologies for the Clinical-Scale Production of MSCs

Spotlight Article

Interview

Steve Oh

Separation & Expansion Technologies

Steve Oh is the Director of Stem Cell Bioprocessing and Institute, Professor/Scientist of the Bioprocessing Technology Institute (BTI) and an expert in integrated stem cell bioprocessing for the manufacture of human pluripotent/embryonic and adult mesenchymal stem cells (MSCs) for cell therapies. Key recent achievements include high density production of pluripotent stem cells, cardiomyocytes, neuroprogenitors and red blood cells in suspension bioreactors. In the MSC area, methods of producing high-quality MSCs, and primed towards cartilage and bone repair have been achieved. Recently a new assay for stem cell senescence useful for the quality control of stem cells for bioprocesses has been developed by his team. He has over 100 publications and 25 patents in stem cells production. He was the International Society of Cellular Therapies (ISCT) Co-Vice President (Asia) from 2015 to 2017, and led the planning of the Sessions for Commercialisation of Cell Therapies for the Silver Jubilee (25 years) ISCT meeting at Suntec City, Singapore in 2016. He is also the current Vice President of the Singapore Stem Cell Society and holds an Adjunct Professorship at the Nanyang Technological University. Steve has founded two stem cell companies, Brilliant Research and Veristem, and is a veteran of 26 years in the biotech industry. Brilliant Research is a company specializing in providing Personalised Stem Cell Banking and Stem Cell Bioprocess solutions to build the 3rd Pillar of Medicine, Cell & Gene Therapies.

Read full article »

Planning for Commercial-Scale Production: Tools & Technologies of the Future

Spotlight Article

Interview

David James

Separation & Expansion Technologies

David is an experienced international Executive who has spent nearly 30 years commercializing innovative technologies. His broad industry experience and balanced technical and commercial perspective have helped launch several market leading instruments, consumables and manufacturing systems for Cell Therapy and Diagnostics. David is a regular conference speaker, guest lecturer for the Department of Chemical and Bio-molecular Engineering (University of Melbourne) and author of multiple papers and articles.

Read full article »

Fueling a Commercial Reality: Optimization of Separation & Expansion Across the Manufacturing Pathway

Spotlight Article

Interview

David DiGiusto

Separation & Expansion Technologies

Chris Wiwi

Dr David DiGiusto is the Executive Director of Stem Cell and Cellular Therapeutic Operations for Stanford Hospital and Clinics and a Senior Academic Researcher in the Division of Stem Cell Transplantation and Regenerative Medicine at Stanford University. He has over 25 years of experience in the scientific, clinical and regulatory aspects of cells as therapeutic agents including the isolation, characterization and genetic modification of hematopoietic stem cells and T-cells for clinical applications. He has been instrumental in the creation of 6 GMP compliant biologics manufacturing facilities and associated quality systems, production and QC testing programs. Under his direction, plasmid DNA, CAR-T-cells, regulatory T-cells, engineered stem cell grafts and gene modified hematopoietic stem cell products have been manufactured and released for use in Phase I/II clinical trials. Dr DiGiusto is a major contributor to first in human (and other ongoing) studies for Cancer and HIV Gene Therapy and has developed methods for assessing ex-vivo stem cell manipulations using in vitro and in vivo models. His laboratory (The Laboratory for Cell and Gene Medicine) specializes in the development of manufacturing processes and QC assays and provides cGMP compliant clinical materials production and regulatory support activities for investigational cell products.

Read full article »
Expert Insight

Technological developments in dielectrophoresis and its path to commercialization

Spotlight Article

Expert Insight

Separation & Expansion Technologies

One of the bottlenecks for cell therapy development is the need to isolate specific cells, be it stem cells with specific differentiation fates, or specific white cells from a blood cell sort. However, the nature of the application means that the separation method should ideally be label-free and GMP-compliant, as well as achieving appropriate levels of throughput and cell recovery. One emergent field in cell separation is dielectrophoresis, an electrostatic method that has the potential to meet this growing need. Recent commercial developments mean that for the first time, this technique will be more widely available to the cell therapy sector.

Read full article »
Twitter IconVisit Our Blog